
Real Time Face Mask Detection For Preventing
the Spread of COVID-19 Using TensorFlow,

Keras and OpenCV

Pierjos Francis COLERE MBOUKOU
colerepierjos30@gmail.com

https://pierjos-colere-website.web.app

Mohammed VI Polytechnic University, Al-Khwarizmi, Data Science
Hay Moulay Rachid, Ben Guerir 43150

https://www.um6p.ma

Abstract. Coronavirus disease (COVID-19) spread rapidly in Wuhan-
China in December 2019 is a dangerous virus which can be spreading
from humans to humans through droplets and airborne. It has rapidly
affected our day-to-day life disrupting the world movements insofar as
wearing a protective face mask has become a new normal. However,
some irresponsible people refuse to wear face mask with so many ex-
cuses. Moreover, developing the face mask detector is very crucial in this
case to help global society. This paper presents a simplified approach to
achieve this purpose using some basic Machine Learning packages like
TensorFlow, Keras, OpenCV and Scikit-Learn. The proposed method
detects the face from the image correctly and then identifies if it has a
mask on it or not. The method attains accuracy up to 98.5% and 97%
on our test and validation data sets.

Keywords: Covid-19, Machine Learning, Face Mask Detection, Sequen-
tial Convolutional Neural Network, TensorFlow, OpenCV, Keras, Scikit-
Learn

1 Introduction

According to the World Health Organization (WHO)’s official Situation Report,
COVID-19 has globally infected over 148 million people causing over 3 million
deaths [1]. The COVID-19 spreads through air channel when an infected person
sneezes or communicate with the other person, the water droplets from their nose
or mouth disseminate through the air and affect other peoples in the vicinity
[2]. Wearing a mask during this pandemic is a critical preventive measure [3]
and is most vital step in times when social distancing is hard to maintain and is
essential, particularly for those people who are at a greater risk of severe illness
from COVID-19 diseases. Therefore, to protect each other, every person should
wear the face mask properly when they are in outdoor. However, most of selfish
people won’t wear the face mask properly with so many reasons. So, to overcome
certain respiratory viral ailments, including COVID-19, wearing a clinical mask



2 Pierjos Francis COLERE MBOUKOU

is very necessary. This paper presents a simplified approach to serve the above
purpose using the basic Machine Learning (ML) packages such as TensorFlow,
Keras, OpenCV and Scikit-Learn.

The rest of the paper is organized as follows: Section 2 explores related work
associated with face mask detection. In Section 3, we define certain terms. Sec-
tion 4 discusses about materials and method used. Results and analysis are
reported in Section 5. Section 6 concludes and draws the line towards future
works.

2 Related Work

The goal of face detection is to determine if there are any faces in the image
or video. If multiple faces are present, each face is enclosed by a bounding box
and thus we know the location of the faces. In face detection method, a face is
detected from an image that has several attributes in it. Given an image, the
challenge is to identify the face from that image. Human faces are difficult to
model as there are many variables that can change for example facial expression,
orientation, lighting conditions and partial occlusions such as sunglasses, scarf,
mask etc. The result of the detection gives the face location parameters and it
could be required in various forms, for instance, a rectangle covering the central
part of the face.

Therefor We used Haar Cascade algorithm, also known as Voila-Jones algo-
rithm to detect faces [4]. Viola-Jones algorithm is named after two computer
vision researchers who proposed the method in 2001, Paul Viola and Michael
Jones in their paper, “Rapid Object Detection using a Boosted Cascade of Sim-
ple Features”. Despite being an outdated framework, Viola-Jones is quite pow-
erful, and its application has proven to be exceptionally notable in real-time face
detection. The algorithm looks at many smaller parts of images and tries to find
a face by looking for specific features in each part. It needs to check many dif-
ferent positions and scales because an image can contain many faces of various
sizes.

3 Terms explaination

Before explaining our method named convolutional neural network model, we
have to explain certain terms for best understanding.

3.1 Convolutional Neural Network

A convolutional neural network (CNN, or ConvNet) is a class of deep neural
network, most commonly applied to analyze visual imagery (computer vision
tasks) [5] like images detection, facial recognition, digital recognition, etc. Cen-
tral to the convolutional neural network is the convolutional layer that gives the
network its name.



Real Time Face Mask Detection 3

Fig. 1. Architecture of a convolutional neural network (CNN).

3.2 Convolutional Layer

The convolutional layer computes the convolutional operation of the input im-
ages using kernel filters to extract fundamental features. This layer is the funda-
mental block of the Convolutional Neural Network. The term convolution implies
a mathematical combination of two functions to get the third function like below.

C(T ) = (I ∗K)(x) =

∫ +∞

−∞
I(T ) ×K(T − x) dT

It specializes in reducing the size of the input matrix but keeping the important
features. This means it detects only the features that contribute the most to the
image.

Fig. 2. Convolution Layer Process.

3.3 Pooling Layer

The pooling layer reduces the number of parameters and computation by down-
sampling the representation. A pooling layer is usually incorporated between two
successive convolutional layers. The pooling function can be max or average. We
used Maxpooling in our method.



4 Pierjos Francis COLERE MBOUKOU

Fig. 3. MaxPooling Layer Process

3.4 Flattering Layer

The transition from bidimensional (or multidimensional) layers to one-dimensional
fully connected layers requires a special reshaping operation called “a flatten
layer.”

Fig. 4. Flattening Layer Process

3.5 Dropout Layer

This layer reduces the overfitting, which may occur while training by drop-
ping random biased neurons from the model. The likelihood for a neuron to be
dropped can be changed by changing the dropout ratio.

4 Materials and Method

4.1 Databases

To build the model that detects if we wear a face mask or not, we combined two
databases our datasets which contain images.

The first one was created by Prajna Bhandary [6]. Dataset consists of 1376
images in which 690 images with people wearing face masks and 686 images with



Real Time Face Mask Detection 5

people who do not wear masks. She took standard images of faces and applied
facial landmarks. Facial landmarks allowed to locate facial features of a person
like eyes, eyebrows, nose and mouth. This used an artificial way to create a
dataset by including a mask on a non-masked person image. Fig. 1 shows the
facial landmarks result with face mask.

Fig. 5. Facial Landmarks Result, Credits [7]

The second one is from Kaggle [8]. It consists of almost 12000 images. Around
6000 images with the face mask are scrapped from google search and all the im-
ages without the face mask are preprocessed from the CelebFace dataset created
by Jessica Li [9]. So by cpmbining these two datasets, we have, in total, 13376
images.

4.2 Packages details

To build our face mask classification model, we needed some important packages.

4.2.1 TensorFlow
TensorFlow is an interface for expressing machine learning algorithms developed

by Google [10]. It is a comprehensive and flexible ecosystem of tools, libraries and
other resources and is utilized for implementing ML systems such as sentiment
analysis, voice recognition, computer vision, text summarization, etc. It is also
used to reshape the image in the data processing.

4.2.2 Keras
Keras is a high-level neural networks library that is running on the top of

TensorFlow. The core data structures of Keras are layers and models [11]. All
the layers used in the CNN model are implemented using Keras. This framework
written in Python code is easy to debug and allows ease for extensibility.



6 Pierjos Francis COLERE MBOUKOU

4.2.3 OpenCV
OpenCV (Open Source Computer Vision Library) is an open-source computer

vision and ML software library. It is utilized to differentiate and recognize faces,
recognize objects, group movements in recordings, trace progressive modules,
follow eye gesture, track camera actions, etc [12]. Our method makes use of
these features of OpenCV in resizing and color conversion of data images.

4.2.4 Scikit-Learn
Scikit-learn (also known as sklearn) is a free software machine learning library

for the Python programming language [13]. We use it for performance metrics
such as confusion matrix, classification report.

4.3 Data Preprocessing

Data preprocessing involves conversion of data from a given format to much more
user friendly, desired and meaningful format. It can be tables, images, videos,
etc. Our method deals with image and video data using Numpy and OpenCV.

4.3.1. RGB image to Gray image
After labelling our images (0 or 1) where 0 means no mask and 1 with mask, we

need to convert them to Gray images. Nowadays, modern image recognition sys-
tems regularly work on grayscale images. Introducing nonessential information
could increase the size of training data required to achieve good performance.
Grayscale is utilized for extracting forms instead of working on color images in-
stantaneously.
CNNs require a fixed-size input image. Therefore we need a fixed common size
for all the images in the dataset. So the gray scale image is resized into 100 x
100.

Fig. 6. RGB image to a Gray Scale image of 100x100 size

4.3.2. Reshaping images for the model
Most convolutional neural networks are designed in a way so that they can only

accept images of a fixed size. This creates several challenges during data acquisi-
tion and model deployment. The common practice to overcome this limitation is



Real Time Face Mask Detection 7

to reshape the input images so that they can be fed into the networks. So the im-
ages are normalized to converge the pixel range between 0 and 1. Then they are
converted to 4 dimensional arrays using data=np.reshape(data,(data.shape[0],
100,100,1)) where 1 indicates the Grayscale image. We can imagine that the
final layer of the neural network has 2 outputs – with mask and without mask,
the data labels are converted to categorical labels.

4.3.3. Splitting data
After that, to avoid overfitting, we split the data into training and testing sets

to evaluate them. 90% data of the data set undergoes training and the rest 10%
goes for testing purposes. Then 20% of the training data is used as validation
data.

4.4 Proposed Approach or Method

The proposed methodology has been clearly explained using the two algorithms
as shown below. In Algorithm 1 shown below, images were taken as an input,
resized and normalized. Data was splitted into training and testing batches.
Adam optimizer was used to compile the whole model. Categorical crossentropy
which is also known as multiclass log loss is used as a loss function (the objective
that the model tries to minimize). As the problem is a classification problem,
metrics is set to “accuracy”. Then the model is trained for 20 epochs (iterations)
which maintains a trade-off between accuracy and chances of overfitting. This
process is well explained in Fig. 7

Fig. 7. Overview of the Model

Algorithm 1 : Face Mask Detection Model

INPUT: Image dataset including faces with mask and without masks



8 Pierjos Francis COLERE MBOUKOU

OUTPUT: Trained Model

STEP 1: Split dataset into train, test data

STEP 2:

for each image in dataset do

Label image (0 or 1). Where 0 means no mask and 1 with mask

Convert the RGB image to Gray-scale image

Resize the gray-scale image into 100 x 100

Normalize the image and convert it into 4 dimensional array

end

STEP 3:

for building the CNN model do

Add a Convolution layer of 200 filters

Add a Pooling layer

Add the second Convolution layer of 100 filters

Add a Pooling layer

Insert a Flatten layer to the network classifier

Add Dropout Layer

Add a Dense layer of 50 neurons

Add the final Dense layer with 2 outputs for 2 categories

end

STEP 4: Train the model on 80% of train data and validate it on

20 % train data left.

STEP 5: Test the model on test data

STEP 6: Save model which has best accuracy

In Algorithm 2 the model trained in previous part was then deployed. If the
faces are detected using Voila-Jones algorithm, a bounding box showing the face
of the person is shown in the output. Our main challenge is to detect the face
from the image correctly and then identify if it has a mask on it or not. The
system should also detect a face along with a mask in motion. So this system
runs in real-time application when the camera detected the user who wear or
does not wear the face mask. If the person does not wear face mask from the
camera, it will alert him/her to wear the face mask and will be going on until
the person put his/her face mask properly.

Algorithm 2 : Face Mask Detector Deployment

INPUT: Camera Information

OUTPUT: Images classified into mask or no mask / Real-time

Classification

STEP 1: Load saved classifier (model) from disk and load face

detector from OpenCV

STEP 2: Load real-time feed from OpenCV

Read the feed frame by frame (1 sec)



Real Time Face Mask Detection 9

STEP 3: Apply face detection model to Detect faces in frames read

in real-time

STEP 4: If faces are detected:

Crop face to bounding box coordinates from face

detection model

Get predictions from the face classifier model

Show output with boxes in real-time feed

If no mask is detected on face:

Alert the person to put his/her mask

Else:

Show normal feed

5 Result And Analysis

The model is trained, validated and tested on a laptop equipped by an Intel
i7 processor (16 GB of RAM). The Jupyter Notebook software equipped with
Python 3.8 kernel was selected in this project.

5.1 Evaluation of CNN model

The metrics selected for evaluation of our CNN model are explained below.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

Precision =
Tp

Tp + Fp

Recall =
Tp

Tp + Fn

Where :
Tp = True Positive means images which were labelled true and after prediction
by model gave true result.
Tn = True Negative refers to images which were labelled true but after predic-
tion resulted in false result.
Fp = False Positive means images which were labelled false and after prediction
resulted in false hence false positives.
Fn = False Negative refers to images which were labelled false and after predic-
tion resulted in true hence false negatives. Precision is a metric that quantifies
the number of correct positive predictions made. That means minimizing false
positives. And recall is a metric that quantifies the number of correct positive
predictions made out of all positive predictions that could have been made; it
minimizes false negatives. After 16 epochs the training accuracy came out to be
98% and 96% for validation accuracy as shown below Fig. 8



10 Pierjos Francis COLERE MBOUKOU

Fig. 8. Model performances (Accuracy and Loss)

The confusion matrix applied on test data and shown in Fig. 9 depicts a form
to compare the labels, model prediction, and actual labels it was supposed to
predict. It is showing where the model is getting confused. It has successfully
identified 1336 true positives, 15 false negatives, 24 false-positive and 1314 true
negatives. The classification report shown in Fig. 10 explains the level of f1 score,
recall, precision, and accuracy of our CNN model.

Fig. 9. Model Confusion Matrix



Real Time Face Mask Detection 11

Fig. 10. Classification report

5.2 Visualization of results

Fig. 11 shows us the predictions on some images. These are the predictions made
on 2 test images. The rectangular green box depicts the correct way of wearing
a mask with an accuracy score on the top left, while the red rectangular box
represents the incorrect way of wearing a mask.

Fig. 11. Predictions on test images

The system can detect occluded faces either with a mask or hand. It considers
the occlusion degree of four regions – nose, mouth, chin and eye to differentiate
between annotated mask or face covered by hand.



12 Pierjos Francis COLERE MBOUKOU

6 Conclusion and Future Work

This work developed the face mask detection by using CNN Algorithm. In this
paper, we briefly explained the motivation of the work at first. Then, we illus-
trated the learning and performance task of the model. Using basic ML tools
and simplified techniques the method has achieved reasonably high accuracy.
From the analysis and results, the algorithm is able to detect and distinguish a
non-wearing and a wearing-mask precisely. This project can be used in numer-
ous applications, such as autonomous driving, education, surveillance, and so on.
Many public service providers will ask the customers to wear masks correctly to
avail of their services. In future, if COVID-19 persists, we will implement this
system in the university cafeteria. We had noticed several people not wearing
their masks when purchasing a product. This endangers the UM6P community.
And we hope this will be installed in other crowd areas which need face mask
detector.

References

1. WHO, https://covid19.who.int/
2. P. Kumar, S. Hama, H. Omidvarborna, A. Sharma, J. Sahani, K.V. Abhijith and

A. Tiwari, Sustainable Cities and Society, 62 (2020), Article 102382
3. A.M. Rahmani and S.Y.H. Mirmahaleh, Sustainable Cities and Society (2020), Ar-

ticle 102568
4. https://www.mygreatlearning.com/blog/viola-jones-algorithm

5. Wikipedia, https://en.wikipedia.org/wiki/Convolutional_neural_network
6. https://www.linkedin.com/feed/update/urn%3Ali%3Aactivity%

3A6655711815361761280/

7. https://www.reddit.com/r/computervision/comments/ihstgi/using_facial_

landmarks_for_overlaying_faces_with/

8. https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset

9. https://www.kaggle.com/jessicali9530

10. ”TensorFlow White Papers”, TensorFlow, https://www.tensorflow.org/about/
bib

11. ”Keras documentation: About Keras”, https://keras.io
12. ”OpenCV”, https://opencv.org
13. ”Sckit-Learn”, https://scikit-learn.org


